Pandas文本数据处理 | 轻松玩转Pandas(4)

2018年6月26日18:10:26 发表评论 329

教你学会 Pandas 不是我的目的,教你轻松玩转 Pandas 才是我的目的。我会通过一系列实例来带入 Pandas 的知识点,让你在学习 Pandas 的路上不再枯燥。

声明:我所写的轻松玩转 Pandas 教程都是免费的,如果对你有帮助,你可以持续关注我。

Pandas缺失值处理 | 轻松玩转Pandas(3) 介绍了 Pandas 中缺失值的处理,这一节我们来看一看如何处理 Pandas 中的文本(字符串)。

# 导入相关库
import numpy as np
import pandas as pd

为什么要用str属性

文本数据也就是我们常说的字符串,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。

index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name")

data = {
    "age": [18, 30, np.nan, 40, np.nan, 30],
    "city": ["Bei Jing ", "Shang Hai ", "Guang Zhou", "Shen Zhen", np.nan, " "],
    "sex": [None, "male", "female", "male", np.nan, "unknown"],
    "birth": ["2000-02-10", "1988-10-17", None, "1978-08-08", np.nan, "1988-10-17"]
}

user_info = pd.DataFrame(data=data, index=index)

# 将出生日期转为时间戳
user_info["birth"] = pd.to_datetime(user_info.birth)
user_info
age birth city sex
name
Tom 18.0 2000-02-10 Bei Jing None
Bob 30.0 1988-10-17 Shang Hai male
Mary NaN NaT Guang Zhou female
James 40.0 1978-08-08 Shen Zhen male
Andy NaN NaT NaN NaN
Alice 30.0 1988-10-17 unknown

在之前已经了解过,在对 Series 中每个元素处理时,我们可以使用 mapapply 方法。

比如,我想要将每个城市都转为小写,可以使用如下的方式。

user_info.city.map(lambda x: x.lower())
---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)

 in ()
----> 1 user_info.city.map(lambda x: x.lower())


C:\soft\py3\lib\site-packages\pandas\core\series.py in map(self, arg, na_action)
   2156         else:
   2157             # arg is a function
-> 2158             new_values = map_f(values, arg)
   2159 
   2160         return self._constructor(new_values,


pandas/_libs/src\inference.pyx in pandas._libs.lib.map_infer()


 in (x)
----> 1 user_info.city.map(lambda x: x.lower())


AttributeError: 'float' object has no attribute 'lower'

What?竟然出错了,错误原因是因为 float 类型的对象没有 lower 属性。这是因为缺失值(np.nan)属于float 类型。

这时候我们的 str 属性操作来了,来看看如何使用吧。

# 将文本转为小写
user_info.city.str.lower()
name
Tom       bei jing 
Bob      shang hai 
Mary     guang zhou
James     shen zhen
Andy            NaN
Alice              
Name: city, dtype: object

可以看到,通过 str 属性来访问之后用到的方法名与 Python 内置的字符串的方法名一样。并且能够自动排除缺失值。

我们再来试试其他一些方法。例如,统计每个字符串的长度。

user_info.city.str.len()
name
Tom       9.0
Bob      10.0
Mary     10.0
James     9.0
Andy      NaN
Alice     1.0
Name: city, dtype: float64

替换和分割

使用 .srt 属性也支持替换与分割操作。

先来看下替换操作,例如:将空字符串替换成下划线。

user_info.city.str.replace(" ", "_")
name
Tom       Bei_Jing_
Bob      Shang_Hai_
Mary     Guang_Zhou
James     Shen_Zhen
Andy            NaN
Alice             _
Name: city, dtype: object

replace 方法还支持正则表达式,例如将所有开头为 S 的城市替换为空字符串。

user_info.city.str.replace("^S.*", " ")
name
Tom       Bei Jing 
Bob                
Mary     Guang Zhou
James              
Andy            NaN
Alice              
Name: city, dtype: object

再来看下分割操作,例如根据空字符串来分割某一列。

user_info.city.str.split(" ")
name
Tom       [Bei, Jing, ]
Bob      [Shang, Hai, ]
Mary      [Guang, Zhou]
James      [Shen, Zhen]
Andy                NaN
Alice              [, ]
Name: city, dtype: object

分割列表中的元素可以使用 get[] 符号进行访问:

user_info.city.str.split(" ").str.get(1)
name
Tom      Jing
Bob       Hai
Mary     Zhou
James    Zhen
Andy      NaN
Alice        
Name: city, dtype: object
user_info.city.str.split(" ").str[1]
name
Tom      Jing
Bob       Hai
Mary     Zhou
James    Zhen
Andy      NaN
Alice        
Name: city, dtype: object

设置参数 expand=True 可以轻松扩展此项以返回 DataFrame。

user_info.city.str.split(" ", expand=True)
0 1 2
name
Tom Bei Jing
Bob Shang Hai
Mary Guang Zhou None
James Shen Zhen None
Andy NaN None None
Alice None

提取子串

既然是在操作字符串,很自然,你可能会想到是否可以从一个长的字符串中提取出子串。答案是可以的。

提取第一个匹配的子串

extract 方法接受一个正则表达式并至少包含一个捕获组,指定参数 expand=True 可以保证每次都返回 DataFrame。

例如,现在想要匹配空字符串前面的所有的字母,可以使用如下操作:

user_info.city.str.extract("(\w+)\s+", expand=True)
0
name
Tom Bei
Bob Shang
Mary Guang
James Shen
Andy NaN
Alice NaN

如果使用多个组提取正则表达式会返回一个 DataFrame,每个组只有一列。

例如,想要匹配出空字符串前面和后面的所有字母,操作如下:

user_info.city.str.extract("(\w+)\s+(\w+)", expand=True)
0 1
name
Tom Bei Jing
Bob Shang Hai
Mary Guang Zhou
James Shen Zhen
Andy NaN NaN
Alice NaN NaN

匹配所有子串

extract 只能够匹配出第一个子串,使用 extractall 可以匹配出所有的子串。

例如,将所有组的空白字符串前面的字母都匹配出来,可以如下操作。

user_info.city.str.extractall("(\w+)\s+")
0
name match
Tom 0 Bei
1 Jing
Bob 0 Shang
1 Hai
Mary 0 Guang
James 0 Shen

测试是否包含子串

除了可以匹配出子串外,我们还可以使用 contains 来测试是否包含子串。例如,想要测试城市是否包含子串 “Zh”。

user_info.city.str.contains("Zh")
name
Tom      False
Bob      False
Mary      True
James     True
Andy       NaN
Alice    False
Name: city, dtype: object

当然了,正则表达式也是支持的。例如,想要测试是否是以字母 “S” 开头。

user_info.city.str.contains("^S")
name
Tom      False
Bob       True
Mary     False
James     True
Andy       NaN
Alice    False
Name: city, dtype: object

生成哑变量

这是一个神奇的功能,通过 get_dummies 方法可以将字符串转为哑变量,sep 参数是指定哑变量之间的分隔符。来看看效果吧。

user_info.city.str.get_dummies(sep=" ")
Bei Guang Hai Jing Shang Shen Zhen Zhou
name
Tom 1 0 0 1 0 0 0 0
Bob 0 0 1 0 1 0 0 0
Mary 0 1 0 0 0 0 0 1
James 0 0 0 0 0 1 1 0
Andy 0 0 0 0 0 0 0 0
Alice 0 0 0 0 0 0 0 0

这样,它提取出了 Bei, Guang, Hai, Jing, Shang, Shen, Zhen, Zhou 这些哑变量,并对每个变量下使用 0 或 1 来表达。实际上与 One-Hot(狂热编码)是一回事。听不懂没关系,之后将机器学习相关知识时会详细介绍这里。

方法摘要

这里列出了一些常用的方法摘要。

方法 描述
cat() 连接字符串
split() 在分隔符上分割字符串
rsplit() 从字符串末尾开始分隔字符串
get() 索引到每个元素(检索第i个元素)
join() 使用分隔符在系列的每个元素中加入字符串
get_dummies() 在分隔符上分割字符串,返回虚拟变量的DataFrame
contains() 如果每个字符串都包含pattern / regex,则返回布尔数组
replace() 用其他字符串替换pattern / regex的出现
repeat() 重复值(s.str.repeat(3)等同于x * 3 t2 >)
pad() 将空格添加到字符串的左侧,右侧或两侧
center() 相当于str.center
ljust() 相当于str.ljust
rjust() 相当于str.rjust
zfill() 等同于str.zfill
wrap() 将长长的字符串拆分为长度小于给定宽度的行
slice() 切分Series中的每个字符串
slice_replace() 用传递的值替换每个字符串中的切片
count() 计数模式的发生
startswith() 相当于每个元素的str.startswith(pat)
endswith() 相当于每个元素的str.endswith(pat)
findall() 计算每个字符串的所有模式/正则表达式的列表
match() 在每个元素上调用re.match,返回匹配的组作为列表
extract() 在每个元素上调用re.search,为每个元素返回一行DataFrame,为每个正则表达式捕获组返回一列
extractall() 在每个元素上调用re.findall,为每个匹配返回一行DataFrame,为每个正则表达式捕获组返回一列
len() 计算字符串长度
strip() 相当于str.strip
rstrip() 相当于str.rstrip
lstrip() 相当于str.lstrip
partition() 等同于str.partition
rpartition() 等同于str.rpartition
lower() 相当于str.lower
upper() 相当于str.upper
find() 相当于str.find
rfind() 相当于str.rfind
index() 相当于str.index
rindex() 相当于str.rindex
capitalize() 相当于str.capitalize
swapcase() 相当于str.swapcase
normalize() 返回Unicode标准格式。相当于unicodedata.normalize
translate() 等同于str.translate
isalnum() 等同于str.isalnum
isalpha() 等同于str.isalpha
isdigit() 相当于str.isdigit
isspace() 等同于str.isspace
islower() 相当于str.islower
isupper() 相当于str.isupper
istitle() 相当于str.istitle
isnumeric() 相当于str.isnumeric
isdecimal() 相当于str.isdecimal

想要学习更多关于人工智能的知识,请关注公众号:AI派

qrcode_for_gh_60cef389e81c_258.jpg

这里我将整篇文章的内容整理成了pdf,想要pdf文件的可以在公众号后台回复关键字:pandas04

更多Pandas知识见:轻松玩转Pandas

  • 个人微信号
  • 添加时请备注“脑洞大开读者”
  • weinxin
  • 微信公众号
  • 关注会有更多精彩内容!
  • weinxin

发表评论

您必须登录才能发表评论!